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Numerical Study of a Fluid Dynamic Traffic 
Flow Model 

 
Md. Shajib Ali ,L. S. Andallah & Murshada Begum  

  
Abstract-Fluid dynamic traffic flow model considered as macroscopic model is a mathematical model that 
formulates the relationships among traffic flow characteristics like density, flow, mean speed of a traffic stream 
etc. We consider a fluid dynamic traffic flow model first developed by Lighthill and Whitham (1955) and Richard 
(1956) shortly called LWR traffic flow model. In this paper, we study two finite difference schemes such as first 
order explicit upwind difference scheme- EUDS (forward time backward space) and second order Lax-Wendroff 
difference scheme-LWDS (forward time centered space) for solving first order PDE of LWR macroscopic traffic 
flow model appended with initial and boundary conditions. The traffic density ( , )t xρ is computed by solving 
LWR macroscopic conservative form of traffic flow model using both schemes. Stability conditions of the 
schemes are determined and it is numerically shown that LWDS is superior to EUDS in terms of time step 
selection. The conditions of stability are also numerically verified. Some numerical simulation results are 
presented for various parameters. 
 
Keywords: LWR Macroscopic Traffic Flow Model, Finite Difference Method and Numerical Simulation. 
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1 Introduction 

Traffic flow can be defined as the study of how 

the vehicles move between origin and destination, 
and how the individual drivers interact with others. 
Since the driver behavior cannot be predicted with 
absolute certainty, mathematical models have been 
built which study the consistent behavior between 
the traffic streams via relationships such as flow q , 
density ρ and the mean velocity v ([1], [2]). The 
continuum traffic flow model was the first order 
model developed by Lighthill, Whitham (1955) and 
Richards (1956) ([4], [9]) based on the assumption 
of mass density conservation, that is, the number of 
vehicles between any two points if there are no 
entrances or exits is conserved. The LWR model is 
a first-order model in the sense it is formulated as a 
scalar hyperbolic conservation law, and is often 
solved by finite difference methods ([5], [6], [7], 
[8]). The non-linear first order partial differential is 
appended by initial and boundary value leads to an 
initial boundary value problem (IBVP). It is too 
complex to be solved by analytical methods. We 
can be solved the non-linear PDE by the method of 
characteristics as a Cauchy problem. However, with 
the rapid development of numerical methods and 
computer technology the system can be solved 
numerically. Numerical solution of the non-linear 
first order partial differential equation of traffic 

flow is obtained by using explicit upwind difference 
scheme (EUDS) and Lax-Wendroff difference 
scheme (LWDS) with initial and boundary value. 
The traffic density ( , )t xρ is computed using both 
schemes. The conditions of stability are also 
numerically verified. 
 
2 Governing Equation of LWR Traffic Flow 
Model 
The general mathematical equation of traffic flow 
model with the initial condition reads as initial 
value problem (IVP) ([3], [4], and [5]) is    
                                                      

( ) ( )

2

max
max

0 0

0

with ,

v
t x

t x x

ρ ρρ
ρ

ρ ρ

  ∂ ∂
+ − =  ∂ ∂   

=

                     (1)                

 
3 Exact Solution of the Non-linear PDE of 
LWR Traffic Flow Model 
The non-linear PDE of IVP (1) can be solved [6] by 
the method of characteristics. The exact solution of 
the IVP (1) is given by [5] 

( ) 0 max
max

2, 1t x x v tρρ ρ
ρ

  
= − −  

  
               (2)                                                       

which is non-linear implicit form and therefore very 
complicated to evaluate at each ( , )t xρ . However, 
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in reality it is very difficult to approximate the 
initial density ( )0 xρ  of the Cauchy problem (1) as 
a function of t  from given initial data. Therefore, 
there is a demand of some efficient numerical 
methods for solving the IVP (1). 
 
4 Finite Difference Method of LWR Traffic 
Flow Model  
We consider our specific non-linear partial 
differential equation of LWR traffic flow model as 
an initial boundary value problem (IBVP): 

( )

( ) ( )
( ) ( )

( ) 0, ,

with i.c. , ;

and b.c. , ; ,a

q t t T a x b
t x

t x x a x b

t a t t t T

ρ ρ

ρ ρ
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∂ ∂
= ≤ ≤

= ≤ ≤

o

o o
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      (3)                                        

2

max
max

where ( ) .q v ρρ ρ
ρ

 
= − 

 
                            

Finite difference methods are the efficient approach 
to numerical solutions of partial differential 
equations. A finite difference method proceeds by 
replacing the derivatives in the differential equation 
by the finite difference approximation. This gives a 
large algebraic system of equation to be developing 
a computer programming code. 
 
4.1 Explicit Upwind Difference Scheme by 
FTBS Techniques 
In this section, we study a finite difference scheme 
for the non-linear LWR traffic flow model. In order 
to develop the scheme, we discretize the space and 

time. We discretize the time derivative
t
ρ∂
∂

 and 

space derivative 
q
x
∂
∂

in the IBVP (3) at any discrete 

point
( ), for 1,......, and 0,......., 1n it x i M n N= = − .W

e assume the uniform grid spacing 1n nt t k+ = + and 
1 .i ix x h+ = +  

The discretization of 
t
ρ∂
∂

is obtained by first order 

forward difference in time 
1n n

i i

t t
ρ ρ ρ+∂ −
=

∂ ∆
     (4) 

Next use the backward space difference 

formula 1
n n
i iq q q

x x
−∂ −

=
∂ ∆

                                    (5)                          

Substituting equation (4), (5) into equation (3) and 
writing n

iρ  for ( , )n
it xρ , the discrete version of the 

non-linear PDE of LWR traffic flow model 
formulates the first order explicit upwind difference 
scheme of the form          

1
1( ) ( ) 0

n n n n
i i i iq q

t x
ρ ρ ρ ρ+
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Also equation (6) can be written as 
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1( )n n n n n

i i i i i
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1
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4.2 Lax-Wendroff Difference Scheme by 
FTCS Techniques 
In order to develop the 2nd order Lax-Wendroff 
method, named after P. Lax and B. Wendroff, can 

be derived in terms of the discrietization of 
t
ρ∂
∂

 is 

obtained by first order forward difference in time 
1n n

i i

t t
ρ ρ ρ+∂ −
=

∂ ∆
. 

Next use the discretization of 
q
x
∂
∂

 is obtained by 

second order centered space difference formula. 
From the Taylor’s series expansion we can write 
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Now in equation (8), where the time derivatives can 
be replaced space derivatives 
using

( )( ) 0 (10)t x
qρ ρ+ =   

This has been done by so called Cauchy-
Kawalewski technique which implies 
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Substitute the preceding expression of time 
derivatives (10) into the Taylor’s series of 

( , )x t kρ + in equation (8) to obtain 
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Using equation (9), we get  
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From equation (8) we get,  
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4.3 Stability Conditions 
The implementation of EUDS and LWDS is not 
straight forward. Since vehicles are moving in only 

one direction, so the characteristic speed 
dq
dt

must 

be positive. Stability condition of EUDS is 
determined in [5] that is the well-posed-ness and 
stability condition of the explicit finite difference 
scheme (7) is guaranteed by the simultaneous 
conditions 

max max ( ), 2ii
k x kρ ρ= ≥o

maxand 1.v t
x
∆

≤
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Also the stability condition for second order LWDS 

is
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This equation implies that if  
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then the new solution is a convex combination of 

the two previous solutions. That is the solution at 

new time-step ( 1)n + at a spatial node is an average 

of the solutions at the previous time-step at the 

spatial nodes 1, and 1.i i i− +  This means that the 

extreme value of the new solution is the average of 
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4.4 Computational Results and Discussion 
We implement two numerical finite difference 
schemes that are first order Explicit Upwind 
Difference Scheme (EUDS) and second order Lax-
Wendroff Difference Scheme (LWDS) by computer 
programming and perform numerical simulation as 
described below. 
 
4.4.1 Comparative Profile of Traffic Density 
in Different Time Step 
We present numerical simulation results based on 
first order i.e. explicit upwind difference scheme 
(EUDS) and second order Lax-Wendroff difference 
scheme (LWDS).  Figure-1 shows density profiles 
of exact solution in different time step 
when max 60km/hourv = . Figure-2 shows 

comparison of density among exact solution, EUDS 
and LWDS in 600th, 1200th and 1800th time step. 
From the figure we see that density profiles of 
LWDS are close nearer to exact solution and EUDS 
is close to LWDS but not nearer to exact solution. 
In figure-3 discretization parameters t=0.1∆ and 

=0.2x∆ solid line represents the exact solution, the 
dot line represents the EUDS and the red line 
represents LWDS of density profile in last time step 
and we see that density profile in right boundary red 
line has enough jigjag. In discretization parameters 
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t=0.6∆ and =0.4x∆  figure-4 last time step jigjag 
is no more than figure-3. In figure-5 discretization 
parameter t=0.05∆ and =0.04x∆  we see that right 
boundary has very few jigjag. Finally, when 
discretization parameter t=0.01∆ and 

=0.04x∆ figure-6 shows the density profile has no 
jigjag. From above discretization parameters 
satisfying the stability conditions of EUDS and 
LWDS. 
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Figure-1: Density profile of exact solution in  different 
time step when max 60km/hourv =     
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Figure-2: Comparison density profile of exact solution, 
EUDS and LWDS in 600th, 1200th, 1800th time step 
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Figure 3: Comparison density profile of exact solution, 
EUDS and LWDS in last time step when t=0.1∆ and 

=0.2x∆   
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Figure 4: Comparison density profile of exact solution, 
EUDS and LWDS in last time step when t=0.6∆ and                                                                                                  

=0.4x∆  
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Figure-5: Comparison density profile of exact solution, 
EUDS and LWDS in last time step when t=0.05∆ and 

=0.04x∆   
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Figure-6: Comparison density profile exact solution, 
EUDS and LWDS in last time step when t=0.01∆                                                                                                                    
and =0.04x∆  
 
4.4.2 Comparison Error Estimation and 

Convergence of Numerical Schemes 

In order to perform error estimation for density ( )ρ , 
we consider exact solution (2) with initial condition 

i.e. linear function 
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We prescribe the corresponding boundary value for 
EUDS by the equation 
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and also the corresponding two sided boundary 
values for LWDS by the equations 
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We compute the relative error in 1L -norm defined 

by 1
1

1

e n

e

e
ρ ρ
ρ
−

= for all time eρ is the exact 

solution and nρ is the numerical solution computed 
by finite difference scheme. 
Figure-7 comparison of relative errors for 

density ( )ρ  between explicit upwind difference 

scheme and Lax-Wendroff difference scheme which 

shows that Lax-Wendroff difference scheme 

provides more accurate results than explicit upwind 

difference scheme. Figure-8 present that the 

density ( )ρ error is decreasing with respect to the 

smaller descritization parameters t∆  and x∆ which 

shows the convergence of explicit upwind 

difference scheme and Lax-Wendroff difference 

scheme. We observe that as we increase number of 

grid points the error is decreasing and also shows 

the rate of convergence of the numerical solutions. 
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Figure-7: Comparison of relative errors between EUDS 

and Lax-Wendroff difference scheme  
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Figure-8: Convergence of errors between EUDS and 

Lax-Wendroff difference scheme 

 
5 Conclusion 
We have demonstrated exact solution and numerical 
solution by using EUDS and LWDS. We establish 
stability conditions of EUDS and LWDS. From the 
above figure it is seen that LWDS density profile is 
very close to exact solution. Also we observe that 
the relative error of LWDS is much less than that of 
EUDS and the rate of convergence of LWDS is 
much higher than that of EUDS which is due to the 
fact that LWDS is a second order model while the 
order of EUDS is one. 
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